# Crawl Space Research

# Managing moisture and saving energy with closed crawl spaces

Cyrus Dastur





## **Crawl Space Moisture Problems**





#### **Chances for Above Ground Decay**









## Typical response: Add ventilation











# Data was Needed to Understand the Problems and Solutions





#### **Funding**

# National Energy Technology Laboratory U.S.Department of Energy

This presentation was written with support of the U.S. Department of Energy under Contract No. DE-FC26-00NT40995. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted presentation.

#### **Co-Funding and Project Management**

Advanced Energy

Project Director: Bruce Davis bdavis@advancedenergy.org

Project Manager: Cyrus Dastur cdastur@advancedenergy.org



## **Project Goals**

- Research: Monitor and compare the thermal and moisture performance of closed vs. wall-vented crawl spaces
  - 12-Home Field Study
  - 2-Home ORNL Hygrothermal Study
- Technology Transfer: Accelerate acceptance of properly closed crawl space systems



#### Why add ventilation to a crawl space???











## 12 Home Field Study Site





#### Phase I: July 2001 – May 2003









## **Data Collection & Monitoring**

- Component air leakage testing
- Temperature and RH logging
- Pin wood moisture readings
- Bio-aerosol sampling
- Short- and long-term radon monitoring



#### **Phase I Crawl Space Relative Humidity**





#### Phase I Crawl Space Absolute Humidity





#### Phase I Results

- Humidity was controlled in closed crawl spaces and not controlled in wall-vented crawl spaces
- Utility bill analysis indicated that the closed crawl space houses might be saving energy on heating and cooling (even with 4 uninsulated homes!).



## New Phase Begins in June 2003

- Sub-metered all heat pumps
- Air-sealed all floors and crawl space ductwork
- Re-measured component leakage
- Provided HVAC supply air in closed crawls (1 cfm per 30 square feet)
- Modified closed crawl space insulation systems



#### Phase II: June 2003 – June 2004









## **Crawl Space Supply Air Duct**





#### **Phase II Crawl Space Dew Points**





#### Phase II Crawl Space Relative Humidity





## **Summer RH Summary**

(Summer: June - August)

|                           | 2002           |                | 2003           |                |
|---------------------------|----------------|----------------|----------------|----------------|
| <u>Percentage of Time</u> | <u>Vente</u> d | <u>Close</u> d | <u>Vente</u> d | <u>Close</u> d |
| Above 90% RH              | 0%             | 0%             | 23%            | 0%             |
| Above 80% RH              | 39%            | 0%             | 86%            | 0%             |
| Above 70% RH              | 79%            | 0%             | 98%            | 5%             |
| Above 60% RH              | 94%            | 0%             | 100%           | 64%            |
| Above 50% RH              | 100%           | 100%           | 100%           | 100%           |



#### **Phase II Average Wood Moisture Content**





#### Seasonal Total Energy Use





# Next Steps: Technology Transfer

Implementing practical changes for large moisture and energy benefits

- Closed crawl space construction guides
- Fact sheets and research results
- Design and analysis tools
- Code language



#### **Next Steps: Construction Guides**



## Next steps: Future research

- Extend energy and moisture research to new regions and house geometries
- Test and measure new drying methods
- Test new component products
- HUD study: Is there a health connection?
- Duke study: Vented crawl spaces as sources of indoor air contaminants



# Next Steps: Product Development

- Structural support
- Air leakage retarder
- Capillary retarder
- Vapor retarder
- Pest management solution
- Thermal insulation
- Fire protection



## Six Implementation Issues

- Overcoming "physics- and logic-free zones"
- Applying codes; working with code officials
- Choosing a design
- Pricing closed crawl space work
- Managing labor: safety, skills, pay
- Managing moisture and job-site logistics



## Six Design Issues

- Pest control
- Moisture control
- Fire standards
- Thermal standards
- Combustion safety
- Radon control

Provide combustion air!

Tjernlund.com

Fieldcontrols.com



#### **Proceed with Care!**

- Closed crawl spaces are robust and tolerate flaws, but are not a silver bullet
- We can (and do) mess them up just like everything else in construction
- Moisture must be managed during the construction process!!



#### **Thank You!**

Advanced Energy
Raleigh, NC
www.advancedenergy.org
www.crawlspaces.org

